Jumat, 12 April 2013

Alam Semesta

Ilc 9yr moll4096.png 
Alam Semesta dapat didefinisikan sebagai segala sesuatu yang dianggap ada secara fisik, seluruh ruang dan waktu, dan segala bentuk materi serta energi. Istilah Semesta atau Jagad Raya dapat digunakan dalam indra kontekstual yang sedikit berbeda, yang menunjukkan konsep-konsep seperti kosmos, dunia, atau alam.

Daftar isi

Penamaan dan Pemaknaan Alam Semesta

Kata Universe biasanya didefinisikan mencakup keseluruhan. Namun, dengan menggunakan definisi alternatif, beberapa kosmolog berspekulasi bahwa Universe hanya merujuk pada alam dimana keberadaan kita berada. Hal ini terkait dengan pemaknaan alam semesta kita yang hanya merupakan satu dari banyak "semesta" yang secara kolektif disebut multiverse[1]. Sebagai contoh, dalam banyak hipotesis dunia semesta baru yang melahirkan dengan setiap gagasan kutipan pengukuran kuantum, semesta ini biasanya dianggap benar-benar terputus dari kita sendiri dan tidak mungkin dapat diamati memalui indra kontektual manusia. Pengamatan bagian yang lebih tua dari alam semesta (yang jauh) menunjukkan bahwa alam semesta telah diatur oleh hukum fisika yang sama dan konstan di sebagian besar wilayah luas yang mengandung sejarah. Namun, dalam teori gelembung alam semesta, mungkin ada variasi tak terbatas semesta yang dibuat dalam berbagai cara, dan mungkin masing-masing memiliki konstanta fisik yang berbeda.
Sepanjang sejarah mencatat, beberapa kosmolog telah diusulkan untuk menjelaskan pengamatan Semesta. Model paling awal ialah geosentris yang dikembangkan oleh seorang filsuf Yunani kuno bernama Claudius Ptolomeuses. Ia berpendapat bahwa alam semesta memiliki ruang yang tak terbatas dan telah ada sebuah kekekalan, tetapi berisi satu set bola konsentris dengan ukuran terbatas - sesuai dengan bintang tetap, Matahari dan berbagai planet - berputar mengelilingi Bumi yang bulat dan tak bergerak. Selama berabad-abad, peningkatan keselarasan pemikiran manusia yang ditopang oleh penemuan teori gravitasi Newton membuat teori heliosentris Copernicus mengenai Tata Surya mulai diyakini. Perbaikan lebih lanjut dalam astronomi menyebabkan kesadaran bahwa tata surya tertanam dalam galaksi yang terdiri dari jutaan bintang, Bima Sakti, dan bahwa ada galaksi lain di luar itu, sejauh selama instrumen astronomi dapat mencapainya. Studi yang meneliti terhadap distribusi galaksi-galaksi dan garis spektrum telah menyebabkan banyak kosmologi modern terkuap. Penemuan pergeseran gelombang merah dan radiasi gelombang mikro, latar belakang kosmik, mengungkapkan bahwa alam semesta berkembang dan tampaknya memiliki awal dan akhir.
Menurut model ilmiah yang berlaku di Alam Semesta, dikenal sebagai Big Bang, alam semesta berkembang dari sebuah fase, sangat panas padat yang disebut zaman Planck, di mana semua materi dan energi alam semesta terkonsentrasi. Sejak zaman Planck, Semesta telah berkembang untuk membentuk saat ini, mungkin dengan jangka waktu singkat (kurang dari 10-32 detik) inflasi kosmik. Beberapa pengukuran eksperimental independen mendukung ekspansi teoretis dan, lebih umum, teori Big Bang. Pengamatan terbaru menunjukkan bahwa ekspansi ini telah mempercepat energi gelap, dan bahwa sebagian besar masalah di Semesta mungkin dalam bentuk yang tidak dapat dideteksi oleh instrumen ini, dan karenanya tidak diperhitungkan dalam model alam semesta sekarang ini; ini telah dinamai materi gelap. Kekurangakuratan pengamatan saat ini telah menghambat prediksi nasib akhir alam semesta. Arus interpretasi pengamatan astronomi menunjukkan bahwa umur alam semesta adalah 13,73 (± 0,12) miliar tahun, [2] dan bahwa diameter alam semesta yang teramati paling tidak 93 milyar tahun cahaya, atau 8,80 × 1026 meter. [3] Menurut relativitas umum, ruang dapat memperluas lebih cepat dari kecepatan cahaya, meskipun kita dapat melihat hanya sebagian kecil dari alam semesta karena pembatasan yang diberlakukan oleh hukum kecepatan cahaya itu sendiri. Tidak pasti, apakah ukuran Semesta terbatas atau tak terbatas.

Etimologi, Sinonim dan Definisi

Alam Semesta atau sering disebut Jagad Raya adalah keseluruhan ruang dan waktu yang terdiri dari triliyunan galaksi yang terbentuk dari bintang-bintang seusai peristiwa Big Bang ratusan milyar tahun yang lalu. Group bintang-bintang ini terlihat membentuk sebuah kontelasi bintang yang oleh budaya Indonesia banyak dimanfaatkan untuk masa pertanian.
Kata Alam Semesta berasal dari kata-kata Univers (Perancis), yang pada gilirannya berasal dari kata Latin Universum [4]. Bahasa Latin banyak digunakan oleh Cicero dan penulis lainnya, yang kemudian, banyak penggunaan indera makna yang sama seperti kata bahasa Inggris modern yang digunakan. [ 5] Kata Latin berasal dari kontraksi Unvorsum puitis - pertama kalinya digunakan oleh Lucretius dalam Buku IV (baris 262) De Rerum natura (Dalam Sifat Pemikiran) - yang menghubungkan un, uni (bentuk kombinasi dari Unus, atau "satu") dengan vorsum, versum (sebuah kata benda yang terbuat dari participle pasif vertere sempurna, yang berarti "sesuatu yang dirotasi, digiling, diubah"). [5] Lucretius digunakan dalam arti kata "segalanya digulung menjadi satu, semuanya digabungkan menjadi satu".
Artistik rendition (sangat berlebihan) dari pendulum Foucault menunjukkan bahwa Bumi tidak diam, tetapi berputar.
Interpretasi alternatif unvorsum adalah "semuanya diputar sebagai salah satu" atau "segalanya diputar oleh salah satu". Dalam pengertian ini, dapat dianggap sebagai terjemahan dari sebuah kata Yunani sebelumnya untuk Semesta, περιφορα, "sesuatu diangkut dalam lingkaran", awalnya digunakan untuk menggambarkan suatu program makan, makanan yang dibawa berkeliling lingkaran para tamu makan malam. [6] Bahasa Yunani ini mengacu pada model Yunani awal alam semesta, di mana semua materi yang terkandung dalam bidang berputar berpusat di Bumi. Menurut Aristoteles, rotasi lingkup terluar bertanggung jawab atas gerak dan perubahan dari segala sesuatu. Itu adalah wajar bagi orang-orang Yunani untuk menganggap bahwa Bumi telah berubah dan bahwa langit berputar mengelilingi bumi, karena pengukuran astronomi dan fisik dengan teliti (seperti pendulum Foucault) diperlukan untuk membuktikan sebaliknya.
Istilah yang paling umum untuk "Alam Semesta" di antara para filsuf Yunani kuno dari Pythagoras adalah το παν (Semuanya), yang didefinisikan sebagai semua materi (το ολον) dan semua ruang (το κενον). [7][8] Lainnya, sinonim untuk alam semesta antara filsuf Yunani kuno termasuk κοσμος (artinya dunia, kosmos) dan φυσις (artinya Alam, dari mana kita berasal) [9] memiliki arti kata yang sama, yang ditemukan di penulis Latin (totum, Mundus, natura) [10] dan bertahan dalam bahasa modern, misalnya, kata-kata Jerman Das Semua, Weltall, dan Natur untuk Universe. Sinonim yang sama ditemukan dalam bahasa Inggris, seperti semua (seperti dalam teori segala sesuatu), kosmos (seperti dalam kosmologi), dunia (seperti pada banyak-dunia hipotesis), dan Alam (seperti dalam hukum alam atau filsafat alam ). [11]

Definisi Luas: Realitas dan Probabilitas

Definisi luas dari alam semesta ditemukan dalam naturae De divisione oleh filsuf abad pertengahan Johannes Scotus Eriugena, yang didefinisikan sebagai segala sesuatu hanya, segala sesuatu yang ada, dan segala sesuatu yang tidak ada. Waktu tidak dipertimbangkan dalam definisi Eriugena's; demikian, definisinya mencakup segala sesuatu yang ada, telah ada dan akan ada, serta segala sesuatu yang tidak ada, belum pernah ada dan tidak akan pernah ada. Definisi ini mencakup segalanya yang tidak diadopsi oleh sebagian besar filsuf di kemudian hari, tetapi sesuatu yang tidak sepenuhnya berbeda muncul kembali dalam fisika kuantum, mungkin paling jelas dalam perumusan jalan-terpisahkan dari Feynman. [12] Menurut formulasi itu, amplitudo probabilitas untuk berbagai hasil percobaan yang diberikan sangat ditentukan oleh keadaan awal sistem tersebut yang termajukan dari awal ke keadaan akhir. Tentu saja, percobaan hanya dapat memiliki satu hasil, dalam kata lain, hanya satu hasil yang mungkin adalah menjadi nyata di Alam Semesta ini, melalui proses misterius pengukuran kuantum, juga dikenal sebagai runtuhnya fungsi gelombang (namun lihat-banyak dunia hipotesis di bawah ini yang dijelaskan di bagian Multiverse). Dalam hal ini, matematika didefinisikan dengan baik, bahkan yang tidak ada (semua path yang mungkin) dapat mempengaruhi yang akhirnya tidak ada (pengukuran eksperimental). Sebagai contoh khusus, setiap elektron intrinsik identik dengan setiap lainnya, sehingga amplitudo probabilitas harus dihitung memungkinkan untuk kemungkinan bahwa mereka bertukar posisi, sesuatu yang dikenal sebagai simetri tukar. Konsepsi ini merangkul baik Semesta ada dan non-paralel longgar ada doktrin-doktrin Buddhis shunyata dan pengembangan saling bergantung realitas, dan Gottfried Leibniz dengan konsepnya yang lebih modern dari kontingensi dan identitas indiscernibles.

Definisi Sebagai Kenyataan

Lebih lazim, Semesta didefinisikan sebagai segala sesuatu yang ada, telah ada, dan akan ada. Menurut definisi dan pemahaman kita, Semesta terdiri dari tiga unsur: ruang dan waktu, yang dikenal sebagai ruang-waktu atau vakum, materi dan berbagai bentuk energi dan momentum menempati ruang-waktu dan hukum-hukum alam yang mengatur semesta raya. Elemen-elemen ini akan dibahas secara lebih rinci di bawah ini. Sebuah definisi terkait istilah Semesta, segala sesuatu yang ada pada saat satu waktu kosmologis, seperti saat ini, seperti dalam kalimat "Jagad Raya sekarang bermandikan seragam dalam radiasi gelombang mikro".
Tiga unsur alam semesta (ruang-waktu, materi-energi, dan hukum fisika) sesuai terhadap ide-ide Aristoteles. Dalam bukunya The Phsyics (Φυσικης, dari mana asal kata "fisika"), Aristoteles membagi το παν (semuanya) menjadi tiga elemen analog kira-kira: materi (hal-hal yang Semesta dibuat), bentuk (susunan yang materi dalam ruang) dan perubahan (bagaimana hal diciptakan, dihancurkan atau diubah dalam sifat-sifatnya, dan sama, bagaimana bentuk yang berubah). Hukum fisika dipahami sebagai aturan yang mengatur sifat materi, bentuk dan perubahan mereka. Kemudian filsuf seperti Lucretius, Ibn Rusyd, Ibn Sina dan Baruch Spinoza diganti atau disempurnakan dalam divisi tersebut, misalnya, Ibn Rusyd dan Spinoza melihat naturans natura (prinsip-prinsip aktif yang mengatur Universe), unsur-unsur yang pasif atas tindakan sebelumnya.

Definisi Yang Dikaitkan Ruang dan Waktu

Galaksi Bima Sakti (Milky Way), galaksi dimana bintang kita, matahari, menjadi salah satu anggota diantara trilyunan bintang lainnya.
Adalah sebuah kemungkinan untuk membayangkan ruang-waktu yang terputus, masing-masing sudah ada tapi tidak dapat berinteraksi satu sama lain. Sebuah metafora mudah divisualisasikan adalah sekelompok gelembung sabun terpisah, di mana pengamat yang tinggal di satu gelembung sabun tidak dapat berinteraksi dengan orang-orang pada gelembung sabun lain, bahkan pada prinsipnya. Menurut salah satu istilah umum, masing-masing "gelembung sabun" ruang-waktu dilambangkan sebagai alam semesta, seperti yang kita sebut bulan kami Bulan. Seluruh koleksi ruang ini yang terpisah-dilambangkan sebagai multiverse. [13] Pada prinsipnya, semesta tidak berhubungan satu dengan lainnya, yang mungkin memiliki dimensionalitas topologi dan ruang-waktu yang berbeda. Berbagai bentuk materi, energi, dan hukum fisik yang berbeda dari fisik konstanta yang kita ketahui, meskipun kemungkinan tersebut saat ini spekulatif.

Definisi Sebagai Sebuah Realitas Yang Diamati

Menurut definisi yang "masih lebih restriktif", Semesta adalah segalanya dalam waktu kita yang terhubung ruang untuk bisa memiliki kesempatan untuk berinteraksi dengan kita dan sebaliknya. Menurut teori relativitas umum, beberapa daerah ruang mungkin tidak pernah berinteraksi dengan kita, bahkan dalam seumur hidup, karena kecepatan cahaya dan ruang ekspansi yang sedang berjalan. Sebagai contoh, pesan radio yang dikirim dari Bumi tidak pernah dapat mencapai beberapa daerah ruang, bahkan jika Semesta akan hidup selamanya; ruang dapat memperluas lebih cepat daripada cahaya yang melintas. Perlu penekankan bahwa daerah-daerah yang jauh dari ruang yang diambil ada dan menjadi bagian dari realitas sebanyak seperti kita; namun kita tidak pernah bisa berinteraksi dengan mereka. Wilayah spasial di mana kita dapat mempengaruhi dan akan terpengaruh dilambangkan sebagai alam semesta teramati. Sebenarnya, seluruh alam semesta yang teramati bergantung pada lokasi pengamat. Dengan perjalanan, pengamat dapat datang ke dalam kontak dengan wilayah yang lebih besar dari ruang-waktu daripada seorang pengamat yang teta di tempatnya, sehingga seluruh alam semesta teramati untuk yang pertama lebih besar daripada yang kedua. Namun demikian, bahkan oleh orang yang paling cepat, mungkin tidak dapat berinteraksi dengan semua ruang. Biasanya, seluruh alam semesta yang teramati diambil yang berarti alam semesta diamati dari sudut pandang kami di Galaksi Bima Sakti.

Ukuran, Usia, Isi, Struktur, dan Hukum

Semesta adalah ruangan yang sangat besar dan mungkin tak terbatas dalam volume; hal yang dapat diamati adalah tersebarnya ruang pada ukuran setidaknya 93 miliar tahun cahaya [14]. Sebagai perbandingan, diameter sebuah galaksi khas hanya 30.000 tahun cahaya, dan jarak khas antara dua galaksi tetangga hanya 3 juta tahun cahaya. [15] Sebagai contoh, panjang diameter Galaksi Bima Sakti kira-kira 100.000 tahun cahaya, [16] dan galaksi saudara terdekat kita, Andromeda Galaxy, terletak sekitar 2,5 juta tahun cahaya.[17] Mungkin ada lebih dari 100 miliar (1011) galaksi di alam semesta teramati. [18] galaksi kerdil umumnya memiliki sesedikitnya sepuluh juta [19] (107) raksasa bintang sampai dengan satu triliun [20] (1012) bintang-bintang, semua mengorbit masa pusat galaksi. Dengan demikian, perkiraan yang sangat kasar dari angka-angka ini akan menyarankan ada sekitar satu sextillion (1021) bintang di seluruh alam semesta telah teramati, meskipun studi 2003 oleh astronom Universitas Nasional Australia menghasilkan angka 70 sextillion (7 x 1022) [21].
Hal diamati tersebar merata (homogen) di seluruh alam semesta, ketika rata-rata jarak lebih dari 300 juta tahun cahaya. [22] Namun, pada skala lebih kecil-panjang, hal ini diamati untuk membentuk "gumpalan", yaitu untuk kluster hierarkis ; banyak atom terkondensasi menjadi bintang, bintang yang paling dalam galaksi, galaksi yang paling dalam cluster, superkluster dan, akhirnya, struktur skala terbesar seperti Tembok Besar galaksi. Hal diamati dari alam semesta juga menyebar isotropically, yang berarti bahwa tidak ada arah pengamatan tampaknya berbeda dari yang lain; setiap wilayah langit telah kira-kira konten yang sama. [23] Semesta juga mandi di sebuah radiasi gelombang mikro yang sangat isotropik yang sesuai ke spektrum kesetimbangan termal benda hitam sekitar 2,725 kelvin. [24] Hipotesis bahwa alam semesta skala besar adalah homogen dan isotropik dikenal sebagai prinsip kosmologis, [25] yang didukung oleh pengamatan astronomi.
Kepadatan keseluruhan kini Semesta sangat rendah, sekitar 9,9 × 10-30 gram per sentimeter kubik. Massa-energi ini tampaknya terdiri dari 73% energi gelap, 23% materi gelap dingin dan 4% materi biasa. Dengan demikian kepadatan atom adalah atas perintah dari atom hidrogen tunggal untuk setiap empat meter kubik volume [26] Sifat energi gelap dan materi gelap yang belum diketahui.. Hal Dark gravitates sebagai hal biasa, sehingga bekerja untuk memperlambat ekspansi dari alam semesta; Sebaliknya, energi gelap mempercepat ekspansi.
Semesta sudah tua dan berkembang. Perkiraan paling tepat dari usia alam semesta adalah 13,73 ± 0.12 miliar tahun, berdasarkan pengamatan radiasi latar belakang gelombang mikro kosmik. [27] Independen perkiraan (berdasarkan pengukuran seperti radioaktif dating) setuju, walaupun mereka kurang tepat, mulai dari 11-20 miliar tahun [28] untuk 13-15 miliar tahun [29] Alam semesta belum sama pada setiap saat dalam sejarahnya;. misalnya, relatif populasi quasar dan galaksi telah berubah dan ruang itu sendiri tampaknya diperluas. Perluasan ini account untuk bagaimana Bumi terikat ilmuwan dapat mengamati cahaya dari 30 miliar tahun cahaya dari galaksi, bahkan jika cahaya telah pergi untuk hanya 13 milyar tahun; ruang yang sangat di antara mereka telah diperluas. Perluasan ini konsisten dengan pengamatan bahwa cahaya dari galaksi jauh telah redshifted; foton dipancarkan membentangkan panjang gelombang frekuensi yang lebih rendah lagi dan selama perjalanan mereka. Tingkat ekspansi ini spasial adalah percepatan, berdasarkan penelitian supernova IA Jenis dan diperkuat oleh data lain.
Fraksi relatif dari unsur-unsur kimia yang berbeda - khususnya atom ringan seperti hidrogen, deuterium dan helium - tampaknya sama di seluruh alam semesta dan sepanjang sejarah yang diamati [30] Alam semesta tampaknya memiliki masalah lebih dari antimateri., Asimetri yang mungkin berkaitan dengan pengamatan pelanggaran CP. [31] The Universe tampaknya tidak memiliki muatan listrik bersih, dan karena itu gravitasi tampaknya menjadi dominan interaksi pada skala kosmologis panjang. Semesta juga tampaknya tidak memiliki momentum bersih atau momentum sudut. Tidak adanya biaya bersih dan momentum akan mengikuti dari hukum-hukum fisika yang berlaku (hukum Gauss dan perbedaan-non dari pseudotensor stres-energi-momentum, masing-masing), jika alam semesta itu terbatas. [32]

PEMBAGIAN IKLIM DUNIA

Pembagian Iklim
Tentunya Anda masih ingat apa yang dimaksud dengan iklim. Coba sebutkan kembali pengertian iklim! Iklim di suatu daerah berkaitan erat dengan letak garis lintang dan ketinggiannya di muka bumi. Berdasarkan letak garis lintang dan ketinggian tersebut, maka iklim dapat dibedakan menjadi dua macam, yaitu iklim matahari dan iklim fisis.
a.
Iklim Matahari
Iklim matahari didasarkan pada banyak sedikitnya sinar matahari yang diterima oleh permukaan bumi. Pembagiannya dapat Anda perhatikan pada gambar 24 berikut.
Untuk lebih memperdalam pemahaman tentang pembagian iklim matahari tersebut di atas dapat Anda pelajari pada uraian berikut.
1)
Iklim Tropis
Iklim tropis terletak antara 0° – 231/2° LU/LS dan hampir 40 % dari permukaan bumi.
Ciri-ciri iklim tropis adalah sebagai berikut: Suhu udara rata-rata tinggi, karena matahari selalu vertikal. Umumnya suhu udara antara 20- 23°C. Bahkan di beberapa tempat rata-rata suhu tahunannya mencapai 30°C.

  • Amplitudo suhu rata-rata tahunan kecil. Di kwatulistiwa antara 1 – 5°C, sedangkan ampitudo hariannya lebih besar.
  • Tekanan udaranya rendah dan perubahannya secara perlahan dan beraturan.
  • Hujan banyak dan lebih banyak dari daerah-daerah lain di dunia.
2)
Iklim Sub Tropis
Iklim sub tropis terletak antara 231/2° – 40°LU/LS. Daerah ini merupakan peralihan antara iklim tropis dan iklim sedang.
Ciri-ciri iklim sub tropis adalah sebagai berikut:
  • Batas yang tegas tidak dapat ditentukan dan merupakan daerah peralihan dari daerah iklim tropis ke iklim sedang.
  • Terdapat empat musim, yaitu musim panas, dingin, gugur, dan semi. Tetapi musim dingin pada iklim ini tidak terlalu dingin. Begitu pula dengan musim panas tidak terlalu panas.
  • Suhu sepanjang tahun menyenangkan. Maksudnya tidak terlalu panas dan tidak terlalu dingin.
  • Daerah sub tropis yang musim hujannya jatuh pada musim dingin dan musim panasnya kering disebut daerah iklim Mediterania, dan jika hujan jatuh pada musim panas dan musim dinginnya kering disebut daerah iklim Tiongkok.
3)
Iklim Sedang
Iklim sedang terletak antara 40°- 661/2° LU/LS. Ciri-ciri iklim sedang adalah sebagai berikut:
  • Banyak terdapat gerakan-gerakan udara siklonal, tekanan udara yang sering berubah-ubah, arah angin yang bertiup berubah-ubah tidak menentu, dan sering terjadi badai secara tiba-tiba.
  • Amplitudo suhu tahunan lebih besar dan amplitudo suhu harian lebih kecil dibandingkan dengan yang terdapat pada daerah iklim tropis.
4)
Iklim Dingin (Kutub)
Iklim dingin terdapat di daerah kutub. Oleh sebab itu iklim ini disebut pula sebagai iklim kutub. Iklim dingin dapat dibagi dua, yaitu iklim tundra dan iklim es.
Ciri-ciri iklim tundra adalah sebagai berikut:
  • Musim dingin berlangsung lama
  • Musim panas yang sejuk berlangsung singkat.
  • Udaranya kering.
  • Tanahnya selalu membeku sepanjang tahun.
  • Di musim dingin tanah ditutupi es dan salju.
  • Di musim panas banyak terbentuk rawa yang luas akibat mencairnya es di permukaan tanah.
  • Vegetasinya jenis lumut-lumutan dan semak-semak.
  • Wilayahnya meliputi: Amerika utara, pulau-pulau di utara Kanada, pantai selatan Greenland, dan pantai utara Siberia.
Sedangkan ciri-ciri iklim es atau iklim kutub adalah sebagai berikut:
• Suhu terus-menerus rendah sekali sehingga terdapat salju abadi.
• Wilayahnya meliputi: kutub utara, yaitu Greenland (tanah hijau) dan Antartika di kutub selatan.
b.
Iklim Fisis
Apa yang dimaksud dengan iklim fisis. Iklim fisis adalah menurut keadaan atau fakta sesungguhnya di suatu wilayah muka bumi sebagai hasil pengaruh lingkungan alam yang terdapat di wilayah tersebut. Misalnya, pengaruh lautan, daratan yang luas, relief muka bumi, angin, dan curah hujan.
Iklim fisis dapat dibedakan menjadi iklim laut, iklim darat, iklim dataran tinggi, iklim gunung/pegunungan dan iklim musim (muson).
1) Iklim laut (Maritim)
Iklim laut berada di daerah (1) tropis dan sub tropis; dan (2) daerah sedang. Keadaan iklim di kedua daerah tersebut sangat berbeda.
Ciri iklim laut di daerah tropis dan sub tropis sampai garis lintang 40°, adalah sebagai berikut:
a) Suhu rata-rata tahunan rendah;
b) Amplitudo suhu harian rendah/kecil;
c) Banyak awan, dan
d) Sering hujan lebat disertai badai.
Ciri-ciri iklim laut di daerah sedang, yaitu sebagai berikut:
a) Amplituda suhu harian dan tahunan kecil;
b) Banyak awan;
c) Banyak hujan di musim dingin dan umumnya hujan rintik-rintik;
d) Pergantian antara musim panas dan dingin terjadi tidak mendadak dan tiba-tiba.
2)
Iklim Darat (Kontinen)
Iklim darat dibedakan di daerah tropis dan sub tropis, dan di daerah sedang. Ciri-ciri iklim darat di daerah tropis dan sub tropis sampai lintang 40(, yaitu sebagai berikut:
a) Amplitudo suhu harian sangat besar sedang tahunannya kecil; dan
b) Curah hujan sedikit dengan waktu hujan sebentar disertai taufan.
Ciri iklim darat di daerah sedang, yaitu sebagai berikut:
a) Amplitudo suhu tahunan besar;
b) Suhu rata-rata pada musim panas cukup tinggi dan pada musim dingin rendah; dan
c) Curah hujan sangat sedikit dan jatuh pada musim panas.
3)
Iklim Dataran Tinggi
Iklim ini terdapat di dataran tinggi dengan ciri-ciri, adalah sebagai berikut:
a) Amplitudo suhu harian dan tahunan besar;
b) Udara kering,
c) Lengas (kelembaban udara) nisbi sangat rendah; dan
d) Jarang turun hujan.
4)
Iklim Gunung
Iklim gunung terdapat di dataran tinggi, seperti di Tibet dan Dekan. Ciri-cirinya, yaitu sebagai berikut:
a) Amplitudo suhu lebih kecil dibandingkan iklim dataran tinggi;
b) Terdapat di daerah sedang;
c) Amplitudo suhu harian dan tahunan kecil;
d) Hujan banyak jatuh di lereng bagian depan dan sedikit di daerah bayangan hujan;
e) Kadang banyak turun salju.
5)
Iklim Musim (Muson)
Iklim ini terdapat di daerah yang dilalui iklim musim yang berganti setiap setengah tahun. Ciri-cirinya adalah sebagai berikut:
a) Setengah tahun bertiup angin laut yang basah dan menimbulkan hujan;
b) Setengah tahun berikutnya bertiup angin barat yang kering dan akan menimbulkan musim kemarau.
Selain pembagian iklim menurut letak garis lintang dan ketinggian tempat, berikut ini akan diuraikan tentang pembagian iklim menurut beberapa para ahli antara lain:
a.
Pembagian Iklim Menurut Dr. Wladimir Koppen
Pada tahun 1918 Dr Wladimir Koppen (ahli ilmu iklim dari Jerman) membuat klasifikasi iklim seluruh dunia berdasarkan suhu dan kelembaban udara. Kedua unsur iklim tersebut sangat besar pengaruhnya terhadap permukaan bumi dan kehidupan di atasnya. Berdasarkan ketentuan itu Koppen membagi iklim dalam lima daerah iklim pokok. Masing-masing daerah iklim diberi simbol A, B, C, D, dan E.
  1. Iklim A atau iklim tropis. Cirinya adalah sebagai berikut:
    • suhu rata-rata bulanan tidak kurang dari 18°C,
    • suhu rata-rata tahunan 20°C-25°C,
    • curah hujan rata-rata lebih dari 70 cm/tahun, dan
    • tumbuhan yang tumbuh beraneka ragam.
  2. Iklim B atau iklim gurun tropis atau iklim kering, dengan ciri sebagai berikut:
    • Terdapat di daerah gurun dan daerah semiarid (steppa);
    • Curah hujan terendah kurang dari 25,4/tahun, dan penguapan besar;
  3. Iklim C atau iklim sedang. Ciri-cirinya adalah suhu rata-rata bulan terdingin antara 18° sampai -3°C.
  4. Iklim D atau iklim salju atau microthermal. Ciri-cirinya adalah sebagai berikut: Rata-rata bulan terpanas lebih dari 10°C, sedangkan suhu rata-rata bulan terdingin kurang dari – 3°C.
  5. Iklim E atau iklim kutub . Cirinya yaitu terdapat di daerah Artik dan Antartika, suhu tidak pernah lebih dari 10°C, sedangkan suhu rata-rata bulan terdingin kurang dari – 3°C.
Dari kelima daerah iklim tersebut sebagai variasinya diperinci lagi menjadi beberapa macam iklim, yaitu:
  1. Daerah iklim A, terbagi menjadi empat macam iklim, yaitu sebagai berikut:
    (1) Af = Iklim panas hujan tropis.
    (2) As = Iklim savana dengan musim panas kering.
    (3) Aw = Iklim savana dengan musim dingin kering.
    (4) Am = Iklim antaranya, musim kering hanya sebentar.
  2. Daerah iklim B, terbagi menjadi dua macam iklim, yaitu:
    (1) Bs = Iklim steppa, merupakan peralihan dari iklim gurun (BW) dan iklim lembab dari iklim A, C, dan D.
    (2) BW = Iklim gurun.
  3. Daerah iklim C, terbagi menjadi tiga macam iklim, yaitu:
    (1) Cs = Iklim sedang (laut) dengan musim panas yang kering atau iklim lembab agak panas kering.
    (2) Cw = Iklim sedang (laut) dengan musim dingin yang kering atau iklim lembab dan sejuk.
    (3) Cf = Iklim sedang (darat) dengan hujan pada semua bulan.
  4. Daerah iklim D, terbagi dua macam iklim, yaitu:
    (1) Dw = Iklim sedang (darat) dengan musim dingin yang kering.
    (2) Df = Iklim sedang (darat) dengan musim dingin yang lembab.
  5. Daerah iklim E, terbagi menjadi 2 macam iklim, yaitu:
    (1) ET = Iklim tundra, temperatur bulan terpanas antara 0( sampai 10(C.
    (2) Ef = Iklim salju , iklim dimana terdapat es abadi.
Perlu Anda ketahui bahwa menurut Koppen di Indonesia terdapat tipe-tipe iklim Af, Aw, Am, C, dan D.
Af dan Am
=
terdapat di daerah Indonesia bagian barat, tengah, dan utara, seperti Jawa Barat, Sumatera, Kalimantan dan Sulawesi Utara.
Aw
=
terdapat di Indonesia yang letaknya dekat dengan benua Australia seperti daerah-daerah di Nusa Tenggara, Kepulauan Aru, dan Irian Jaya pantai selatan.
C
=
terdapat di hutan-hutan daerah pegunungan.
D
=
terdapat di pegunungan salju Irian Jaya.
b.
Pembagian Iklim Menurut F. Junghuhn
Berdasarkan hasil penyelidikan Junghuhn pembagian daerah iklim di Jawa ditetapkan secara vertikal sesuai dengan kehidupan tumbuh-tumbuhan. Perhatikan pada gambar di bawah ini.

Menurut Junghuhn pembagian daerah iklim dapat dibedakan sebagai berikut
  1. Daerah panas/tropis
    Tinggi tempat antara 0 – 600 m dari permukaan laut. Suhu 26,3° – 22°C. Tanamannya seperti padi, jagung, kopi, tembakau, tebu, karet, kelapa, dan cokelat.
  2. Daerah sedang
    Tinggi tempat 600 – 1500 m dari permukaan laut. Suhu 22° -17,1°C. Tanamannya seperti padi, tembakau, teh, kopi, cokelat, kina, dan sayur-sayuran.
  3. Daerah sejuk
    Tinggi tempat 1500 – 2500 m dari permukaan laut. Suhu 17,1° – 11,1°C. Tanamannya seperti teh, kopi, kina, dan sayur-sayuran.
  4. Daerah dingin
    Tinggi tempat lebih dari 2500 m dari permukaan laut. Suhu 11,1° – 6,2°C. Tanamannya tidak ada tanaman budidaya.
c.
Pembagian Iklim Menurut Mohr
Mohr membagi iklim berdasarkan curah hujan yang sampai ke permukaan bumi, yaitu menjadi tiga golongan sebagai berikut:
  1. Bulan kering (BK), yaitu jumlah rata-rata curah hujan dalam bulan tersebut kurang dari 60 mm.
  2. Bulan sedang (BS, yaitu jumlah rata-rata curah hujan dalam bulan tersebut berkisar antara 60 – 90 mm.
  3. Bulan basah (BB), yaitu jumlah rata-rata curah hujan dalam bulan tersebut 100 mm ke atas.
d.
  1. Bulan kering (BK), yaitu curah hujan yang sampai ke permukaan bumi kurang dari 60 mm.
  2. Bulan basah (BB), yaitu curah hujan yang sampai kepermukaan bumi lebih dari 60 mm. 


Sumber : http://milasyafaah22.blogspot.com/p/pembagian-iklim-dunia_30.html

Hujan

Hujan adalah sebuah presipitasi berwujud cairan, berbeda dengan presipitasi non-cair seperti salju, batu es dan slit. Hujan memerlukan keberadaan lapisan atmosfer tebal agar dapat menemui suhu di atas titik leleh es di dekat dan di atas permukaan Bumi. Di Bumi, hujan adalah proses kondensasi uap air di atmosfer menjadi butir air yang cukup berat untuk jatuh dan biasanya tiba di daratan. Dua proses yang mungkin terjadi bersamaan dapat mendorong udara semakin jenuh menjelang hujan, yaitu pendinginan udara atau penambahan uap air ke udara. Virga adalah presipitasi yang jatuh ke Bumi namun menguap sebelum mencapai daratan; inilah satu cara penjenuhan udara. Presipitasi terbentuk melalui tabrakan antara butir air atau kristal es dengan awan. Butir hujan memilik ukuran yang beragam mulai dari pepat, mirip panekuk (butir besar), hingga bola kecil (butir kecil).
Kelembapan yang bergerak di sepanjang zona perbedaan suhu dan kelembapan tiga dimensi yang disebut front cuaca adalah metode utama dalam pembuatan hujan. Jika pada saat itu ada kelembapan dan gerakan ke atas yang cukup, hujan akan jatuh dari awan konvektif (awan dengan gerakan kuat ke atas) seperti kumulonimbus(badai petir) yang dapat terkumpul menjadi ikatan hujan sempit. Di kawasan pegunungan, hujan deras bisa terjadi jika aliran atas lembah meningkat di sisi atas angin permukaan pada ketinggian yang memaksa udara lembap mengembun dan jatuh sebagai hujan di sepanjang sisi pegunungan. Di sisi bawah angin pegunungan, iklim gurun dapat terjadi karena udara kering yang diakibatkan aliran bawah lembah yang mengakibatkan pemanasan dan pengeringan massa udara. Pergerakan truf monsun, atau zona konvergensi intertropis, membawa musim hujan ke iklim sabana. Hujan adalah sumber utama air tawar di sebagian besar daerah di dunia, menyediakan kondisi cocok untuk keragaman ekosistem, juga air untuk pembangkit listrik hidroelektrik dan irigasi ladang. Curah hujan dihitung menggunakan pengukur hujan. Jumlah curah hujan dihitung secara aktif oleh radar cuaca dan secara pasif oleh satelit cuaca.
Dampak pulau panas perkotaan mendorong peningkatan curah hujan dalam jumlah dan intensitasnya di bawah angin perkotaan.Pemanasan global juga mengakibatkan perubahan pola hujan di seluruh dunia, termasuk suasana hujan di timur Amerika Utara dan suasana kering di wilayah tropis. Hujan adalah komponen utama dalam siklus air dan penyedia utama air tawar di planet ini. Curah hujan rata-rata tahunan global adalah 990 millimetre (39 in). Sistem pengelompokan iklim seperti sistem pengelompokan iklim Köppenmenggunakan curah hujan rata-rata tahunan untuk membantu membedakan kawasan-kawasan iklim. Antarktika adalah benua terkering di Bumi. Di daerah lain, hujan juga pernah turun dengan kandungan metana, besi, neon, dan asam sulfur.

Pembentukan

Udara lembap

Udara berisikan uap air dan sejumlah air dalam massa udara kering, disebut Rasio Pencampuran, diukur dalam satuan gram air per kilogram udara kering (g/kg). Jumlah kelembapan di udara juga disebut sebagai kelembapan relatif; yaitu persentase total udara uap air yang dapat bertahan pada suhu udara tertentu. Jumlah uap air yang dapat ditahan udara sebelum melembap (100% kelembapan relatif) dan membentuk awan (sekumpulan air kecil dan tampak dan partikel es yang tertahan di atas permukaan Bumi)bergantung pada suhunya. Udara yang lebih panas memiliki lebih banyak uap air daripada udara dingin sebelum melembap. Karena itu, satu-satunya cara untuk melembapkan udara adalah dengan mendinginkannya. Titik embun adalah suhu yang dicapai dalam pendinginan udara untuk melembapkan udara tersebut.
Ada empat mekanisme utama dalam pendinginan udara hingga titik embunnya: pendinginan adiabatik, pendinginan konduktif, pendinginan radiasional, dan pendinginan evaporatif. Pendinginan adiabatik terjadi ketika udara naik dan menyebar. Udara dapat naik karena konveksi, gerakan atmosfer berskala besar, atau perintang fisik seperti pegunungan (pengangkatan orografis). Pendinginan konduktif terjadi ketika udara bertemu permukaan yang lebih dingin, biasanya tertiup dari satu permukaan ke permukaan lain, misalnya dari permukaan air ke daratan yang lebih dingin. Pendinginan radiasional terjadi karena emisi radiasi inframerah yang muncul akibat udara ataupun permukaan di bawahnya.Pendinginan evaporatif terjdai ketika kelembapan masuk dalam udara melalui penguapan, sehingga memaksa suhu udara mendingin hingga suhu bulb basah, atau mencapai titik kelembapan.
Cara utama uap air dapat bergabung dengan udara adalah ketika angin berkonvergensi ke wilayah gerakan ke atas, presipitasi atau virga yang jatuh dari atas, pemanasan siang hari yang menguapkan air dari permukaan laut, badan air atau tanah basah,transpirasi tumbuhan, udara dingin atau kering yang bergerak di perairan panascool or dry air moving over warmer water, dan udara yang naik di pegunungan. Uap air biasanya mulai mengembun di nuklei kondensasi seperti debu, es, dan garam untuk membentuk awan. Bagian-bagian tinggi front cuaca (tiga dimensi) memaksa wilayah luas melakukan gerakan ke atas di atmosfer Bumi sehingga membentuk dek awan seperti altostratus atau sirostratus. Stratus adalah dek awan stabil yang terbentuk ketika udara dingin dan stabil terperangkap di bawah massa udara panas. Awan ini juga dapat terbentuk akibat pengangkatan kabut adveksiketika kondisi berangin.

Koalesensi

Diagram memperlihatkan bahwa butir hujan terkecil berbentuk hampir bulat. Ketika butir semakin besar, bentuknya semakin pepat di bawah seperti roti hamburger. Butir hujan terbesar terpisah menjadi butir-butir kecil karena resistensi air yang membuatnya semakin tidak stabil.
Bentuk butir hujan menurut ukurannya
Koalesensi terjadi ketika butir air bergabung membentuk butir air yang lebih besar, atau ketika butir air membeku menjadi kristal es yang dikenal sebagai proses Bergeron. Resistensi udara mengakibatkan butiran air mengambang di awan. Ketika turbulensi udara terjadi, butiran air bertabrakan dan menghasilkan butiran yang lebih besar. Butiran air besar ini turun dan koalesensi terus berlanjut, sehingga butiran menjadi cukup berat untuk melawan resistensi udara dan jatuh sebagai hujan. Koalesensi umumnya sering terjadi di awan atas titik beku dan dikenal sebagai proses hujan hangat. Di awan bawah titik beku, kristal es mulai jatuh ketika memiliki massa yang cukup. Umumnya, kristal membutuhkan massa yang lebih besar daripada koalesensi yang terjadi antara kristal dan butiran air sekitarnya. Proses ini bergantung kepada suhu, karena butiran air superdingin hanya ada di awan bawah titik beku. Selain itu, karena perbedaan suhu yang besar antara awan dan permukaan, kristal-kristal es ini bisa mencair ketika jatuh dan menjadi hujan.
Butiran hujan memiliki beragam ukuran mulai dari diameter rata-rata 01 millimetre (0.039 in) hingga 9 millimetre (0.35 in), di atas itu butiran akan terpisah-pisah. Butiran kecil disebut butiran awan dan berbentuk bola. Butiran hujan besar semakin pepat di bawah seperti roti hamburger, butiran terbesar berbentuk mirip parasut. Berbeda dengan kepercayaan masyarakat, bentuk butir hujan yang asli justru tidak mirip air mata. Butiran hujan terbesar di Bumi tercatat di Brasil dan Kepulauan Marshall pada tahun 2004—beberapa di antaranya sebesar 10 millimetre (0.39 in). Ukuran besar ini disebabkan oleh pengembunan partikel asapbesar atau tabrakan antara sekelompok kecil butiran dengan air tawar yang banyak.
Intensitas dan durasi hujan biasanya berkaitan terbalik yang berarti badai intensitas tinggi memiliki durasi pendek dan badai intensitas rendah memiliki durasi panjang.[ Butir hujan pada hujan es cair cenderung lebih besar daripada butiran hujan lain. Butir hujan jatuh pada kecepatan terminalnya, lebih besar untuk butiran besar karena massanya yang lebih besar terhadap rasio tarikan. Di permukaan laut tanpa angin, gerimis 05 millimetre (0.20 in) jatuh dengan kecepatan 2 metre per detik (4.5 mph), sementara butiran besar 5 millimetre (0.20 in) jatuh pada kecepatan 9 metre per detik (20 mph).[27] Suara butir hujan menabrak air disebabkan oleh gelembung air berosilasi di bawah air.[28][29] Kode METAR untuk hujan adalah RA, sementara kode untuk hujan deras adalah SHRA.[30]

[sunting]Sebab

Aktivitas frontal

Hujan stratiform (perintang hujan besar dengan intensitas yang relatif sama) dan dinamis (hujan konvektif yang alaminya deras dengan perubahan intensitas besar dalam jarak pendek) terjadi sebagai akibat dari naiknya udara secara perlahan dalam sistem sinoptis(satuan cm/detik), seperti di sekitar daerah front dingin dan dekat front panas permukaan. Kenaikan sejenis juga terjadi di sekitar siklon tropis di luar dinding mata, dan di pola hujan sekitar siklon lintang tengah. Berbagai jenis cuaca dapat ditemukan di sepanjang front tutupan dengan kemungkinan terjadinya badai petir, namun biasanya jalur mereka dikaitkan dengan penguapan massa air. Front tutupan biasanya terbentuk di sekitar daerah bertekanan rendah.[17] Hal yang memisahkan curah hujan dari presipitasi lainnya, sepertibutir es dan salju, adalah adanya lapisan tebal udara yang tinggi dengan suhu di atas titik cair es, yang mencairkan hujan beku sebelum mencapai tanah. Jika ada lapisan dangkal dekat permmukaan yang suhunya di bawah titik beku, hujan beku (hujan yang membeku setelah bersentuhan dengan permukaan di lingkungan sub-beku) akan terjadi.[32] Hujan es semakin jarang terjadi ketika titik beku di atas atmosfer melebihi ketinggian 11.000 kaki (3,400 m) di atas permukaan laut.[33]

[sunting]Konveksi

Diagram memperlihatkan udara lembap menjadi lebih panas daripada sekitarnya, udara bergerak ke atas dan menyebabkan hujan deras singkat.
Hujan konvektif
Hujan konvektif, atau hujan deras, berasal dari awan konvektif seperti kumulonimbusatau kumulus kongestus. Hujan ini jatuh deras dengan intensitas yang cepat berubah. Hujan konvektif jatuh di suatu daerah dalam waktu yang relatif singkat, karena awan konvektif memiliki bentangan horizontal terbatas. Sebagian besar hujan di daerah tropisbersifat konvektif; namun, selain hujan konvektif, hujan stratiform juga diduga terjadi. Graupel dan hujan es menandakan konveksi. Di lintang tengah, hujan konvektif berselang-seling dan sering dikaitkan dengan batasan baroklinis seperti front dingin, garis squall, dan front panas.

Efek orografis

Diagram memperlihatkan bagaimana udara lembap di samudra naik dan bergerak ke daratan, menyebabkan pembekuan dan hujan turun ketika awan melintasi untaian pegunungan.
Hujan orografis
Hujan orografis terjadi di sisi atas angin pegunungan dan disebabkan oleh gerakan udara lembap berskala besar ke atas melintasi pegunungan, mengakibatkan pendinginan dan kondensasi adiabatik. Di daerah berpegunungan dunia yang mengalami angin relatif tetap (misalnya angin dagang), iklim yang lebih lembap biasanya lebih menonjol di sisi atas angin gunung daripada sisi bawah angin gunung. Kelembapan tidak ada karena pengangkatan orografis, meninggalkan udara yang lebih kering (lihat angin katabatik) di sisi bawah angin yang menurun dan menghangatkan serta menjadi tempat pengamatan bayangan hujan.[15]
Di Hawaii, Gunung Wai'ale'ale, di pulau Kauai, terkenal karena curah hujannya yang ekstrem dan memiliki curah hujan rata-rata tahunan tertinggi kedua di dunia, 460 inci (12,000 mm).[37] Sistem badai Kona membasahi negara bagian ini dengan hujan deras antara Oktober dan April.[38] Iklim setempat bervariasi di masing-masing pulau karena topografinya, terbagi menjadi kawasan atas angin (Koʻolau) dan bawah angin (Kona) berdasarkan lokasi relatif terhadap pegunungan tinggi. Sisi atas angin memaparkan wilayah timur terhadap angin dagang timur laut dan menerima lebih banyak hujan; sisi bawah angin lebih kering dan cerah, dengan sedikit hujan dan cakupan awan.[39]
Di Amerika Selatan, untaian pegunungan Andes menghalangi kelembapan Pasifik yang datang ke benua ini, mengakibatkan iklim gurun di bawah angin melintasi Argentina Barat.[40] Pegunungan Sierra Nevada menciptakan efek yang sama di Amerika Utara denngan membentuk Great Basin dan Gurun Mojave.[41][42]

[sunting]Wilayah tropis

Tabel memperlihatkan sebuah kota di Australia dengan hujan 450 mm pada musim dingin dan kurang dari 50 mm pada musim panas.
Penyebaran hujan bulanan di Cairnsmemperlihatkan batas musim hujan di daerah tersebut
Musim hujan adalah masa dalam suatu tahun yang terjadi selama satu atau beberapa bulan ketika sebagian besar hujan rata-rata tahunan suatu daerah jatuh di tempat tersebut. Istilah musim hijau juga kadang digunakan sebagai eufemisme oleh pihak pariwisata. Wilayah dengan musim hujan tersebar di beberapa kawasan tropis dansubtropis. Iklim dan wilayah sabana dengan cuaca monsun memiliki musim panas hujan dan musim dingin kemarau. Hutan hujan tropis teknisnya tidak memiliki musim kemarau atau hujan, karena hujan tersebar merata sepanjang tahu. Sejumlah daerah dengan musim hujan akan mengalami jeda dalam pertengahan musim hujan ketika zona konvergensi intertropis atau truf monsun bergerak ke kutub dari lokasinya selama pertengahan musim panas.[24] Ketika musim hujan terjadi selama musim panas, hujan lebih sering turun selama akhir sore dan awal malam. Musim hujan adalah masa ketika kualitas udara[47] dan air segar membaik,[48][49] dan tanaman tumbuh subur.
Siklon tropis, sumber curah hujan sangat deras, terdiri dari massa udara besar beberapa ratus mil dengan tekanan rendah di pusatnya dan angin bertiup ke pusat searah jarum jam (belahan Bumi selatan) atau berlawanan arah jarum jam (belahan Bumi utara). Meski siklon dapat mengakibatkan kematian dan kerusakan properti yang besar, inilah faktor penting dalam penguasaan hujan atas suatu daerah, karena siklon dapat membawa hujan yang sangat dibutuhkan di wilayah kering. Wilayah di sepanjang jalurnya dapat menerima jatah hujan setahun penuh melalui satu kali peristiwa siklon tropis.

Pengaruh manusia

Citra Atlanta, Georgia memperlihatkan penyebaran suhu, warna biru berarti suhu dingin, merah hangat, dan putih panas.
Zat partikulat yang dihasilkan oleh gas buang mobil dan sumber-sumber polusi lain membentuk nuklei kondensasi awan, yang mendorong pembentukan awan dan meningkatnya kemungkinan hujan. Akibat polusi lalu lintas penglaju dan komersial menumpuk sepanjang minggu, kemungkinan hujan meningkat: hujan memuncak pada Sabtu setelah lima hari penumpukan polusi. Di daerah padat penduduk dekat pesisir, seperti Pesisir Timur Amerika Serikat, dampaknya bisa dramatis: ada kemungkinan hujan 22% lebih tinggi pada hari Sabtu daripada Senin.[53] Dampak pulau panas perkotaan memanaskan kota sebesar 06 °C (10.8 °F) hingga 56 °C (100.8 °F) di atas kawasan pinggiran kota dan pedesaan sekitarnya. Panas tambahan ini mendorong gerakan yang lebih besar ke atas dan menyebabkan aktivitas hujan deras dan badai petir tambahan. Tingkat curah hujan di bawah angin kota meningkat antara 48% dan 116%. Sebagai akibat pemanasan ini, curah hujan bulanan 28% lebih besar antara 20 mil (32 km) hingga 40 mil (64 km) di bawah angin kota, jika dibandingkan dengan atas angin.[54] Sejumlah kota mengakibatkan curah hujan total meningkat sebesar 51%.[55]
Peta penyebaran suhu dunia memperlihatkan belahan Bumi utara lebih panas daripada belahan Bumi selatan selama periode tersebut.
Anomali suhu permukaan rata-rata pada periode 1999 hingga 2008 dibandingkan dengan suhu rata-rata dari 1940 hingga 1980
Suhu yang meningkat cenderung meningkatkan penguapan yang dapat mendorong lebih banyak hujan. Jumlah peristiwa hujan meningkat di daratan sebelah utara 30°N sejak 1900 hingga 2005, namun mulai menurun di kawasan tropis sejak 1970-an. Di seluruh dunia, tidak ada kecenderungan presipitasi keseluruhan secara statistik dalam satu abad terakhir, meski kecenderungan hujan bervariasi menurut daerah dan waktunya. Wilayah timur Amerika Utara dan Selatan, Eropa Utara, dan Asia Tengah semakin basah, Sahel, Mediterania, Afrika bagian Selatan, dan beberapa bagian Asia Selatan semakin kering. Terjadi peningkatan jumlah peristiwa hujan deras di berbagai daerah dalam satu abad terakhir, termasuk peningkatan sejak 1970-an akibat banyaknya kekeringan—khususnya di wilayah tropis dan subtropis. Perubahan curah hujan dan penguapan di samudra diakibatkan oleh berkurangnya salinitas di perairan lintang tengah dan tinggi (berarti lebih banyak hujan) dan meningkatnya salinitas di lintang rendah (berarti sedikit hujan dan/atau banyak penguapan). Di daratan Amerika Serikat, total curah hujan tahunan meningkat dengan tingkat rata-rata 6,1 persen per abad sejak 1900, dengan peningkatan tertinggi terjadi di wilayah iklim Tengah Utara Timur (11,6 persen per abad) dan Selatan (11,1 persen). Hawaii adalah satu-satunya wilayah yang mengalami penurunan (-9,25 persen).[56]
Upaya mempengaruhi cuaca yang paling sukses adalah penyemaian awan yang melibatkan teknik peningkatan presipitasi musim dingin di atas pegunungan dan mengurangi hujan es.[57]

[sunting]Karakteristik

[sunting]Pola

Ikatan badai petir terlihat di tampilan radar cuaca
Ikatan hujan adalah wilayah awan dan presipitasi yang panjang. Gelombang hujan dapat bersifat stratiform atau konvektif,[58] dan terbentuk akibat perbedaan suhu. Jika dilihat melalui pencitraan radar cuaca, perpanjangan presipitasi ini disebut sebagai struktur terikat.[59] Ikatan hujan mendahului front tutupan panas dan front panasdikaitkan dengan gerakan lemah ke atas,[60] dan cenderung lebar serta bersifat stratiform.[61]
Ikatan hujan yang muncul dekat dan mendahului front dingin bisa jadi merupakan garis squall yang mampu menghasilkan tornado.[62] Ikatan hujan yang dikaitkan dengan front dingin dapat dibelokkan oleh pegunungan lurus terhadap orientasi front karena pembentukan jet penghalang tingkat rendah.[63] Ikatan badai petir dapat terbentuk bersama angin laut dan angin darat jika kelembapan yang diperlukan untuk membentuknya ada pada saat itu. Jika ikatan hujan angin laut cukup aktif mendahului front dingin, mereka mampu menutupi lokasi front dingin tersebut.[64]
Ketika siklon menutupi langit, sebuah truf udara panas tinggi (trough of warm air aloft), atau "trowal", akan terjadi akibat angin selatan yang kuat di perbatasan timurnya berputar-putar tinggi mengitari kawasan timur lautnya, dan mengarah ke periferi (juga disebut sabuk pengangkut panas) barat lautor, memaksa truf permukaan berlanjut ke sektor dingin lengkungan yang sama menuju front tutupan. Trowal menciptakan bagian dari siklon tutupan yang disebut sebagai kepala koma, karena bentuk awan pertengahan troposfer sepertikoma yang menyertai fenomena ini. Ini juga bisa menjadi fokus atas presipitasi lokal yang deras, dengan kemungkinan badai petir jika atmosfer di sepanjang trowal cukup stabil untuk menciptakan konveksi.[65] Pengikatan di dalam pola presipitasi kepala koma suatusiklon ekstratropis dapat menandakan hujan deras.[66] Di balik siklon ekstratropis pada musim gugur dan dingin, ikatan hujan dapat terbentuk di bawah angin permukaan air panas seperti Danau-Danau Besar. Di bawah angin kepulauan, ikatan hujan deras dan badai petir dapat terbentuk karena konvergensi angin tingkat rendah di bawah angin batas pulau. Di lepas pantai California, hal ini terjadi ketika adanya peningkatan front dingin.[67]
Ikatan hujan dengan siklon tropis memiliki orientasi melengkung. Siklon tropis berisikan hujan deras dan badai petir yang, bersama dinding mata dan mata, membentuk hurikan atau badai tropis. Batas ikatan hujan di sekitar siklon tropis dapat membantu menentukan intensitas siklon tersebut.[68]

[sunting]Keasaman

Siklus hujan asam
pH hujan selalu bervariasi yang umumnya dikarenakan daerah asal hujan tersebut. Di pesisir timur Amerika, hujan yang berasal dari Samudra Atlantik biasanya memiliki pH 5,0-5,6; hujan yang berasal dari seberang benua (barat) memiliki pH 3,8-4,8; dan badai petir lokal memiliki pH serendah 2,0.[69] Hujan menjadi asam karena keberadaan dua asam kuat, yaitu asam belerang (H2SO4) dan asam nitrat (HNO3). Asam belerang berasal dari sumber-sumber alami seperti gunung berapi dan lahan basah (bakteri penghisap sulfat); dan sumber-sumber antropogenik seperti pembakaran bahan bakar fosil dan pertambangan yang mengandung H2S. Asam nitrat dihasilkan oleh sumber-sumber alami seperti petir, bakteri tanah, dan kebakaran alami; selain itu juga sumber-sumber antropogenik seperti pembakaran bahan bakar fosil dan pembangkit listrik. Dalam 20 tahun terakhir, konsentrasi asam nitrat dan asam belerang dalam air hujan telah berkurang yang dikarenakan adanya peningkatan amonium (terutama amonia dari produksi ternak) yang berperan sebagai penahan hujan asam dan meningkatkan pH-nya.[70]

[sunting]Pengelompokan iklim Köppen

Peta iklim Köppen-Geiger terbaru[71]
██ Af██ Am██ Aw
██ BWh██ BWk██ BSh██ BSk
██ Csa██ Csb
██ Cwa██ Cwb
██ Cfa██ Cfb██ Cfc
██ Dsa██ Dsb██ Dsc██ Dsd
██ Dwa██ Dwb██ Dwc██ Dwd
██ Dfa██ Dfb██ Dfc██ Dfd
██ ET██ EF
Klasifikasi Köppen bergantung pada nilai suhu dan presipitasi rata-rata bulanan. Bentuk klasifikasi Köppen yang umum digunakan memiliki lima jenis utama mulai dari A hingga E. Jenis utama tersebut adalah A, tropis; B, kering; C, sejuk lintang menengah; D, dingin lintang menengah; dan E, kutub. Lima klasifikasi utama ini dapat dibagi lagi menjadi klasifikasi sekunder seperti hutan hujan, monsun, sabana tropis,subtropis lembap, daratan lembap, iklim lautan, iklim mediterania, stepa, iklim subarktik, tundra, daratan es kutub, dan gurun.
Hutan hujan ditandai dengan curah hujan tinggi yang minimum normal tahunnya antara 1.750 millimetre (69 in) dan 2.000 millimetre (79 in).[72] Sebuah sabana tropis adalahbioma daratan rumput yang terletak di kawasan iklim semi-gersang hingga semi-lembap di lintang subtropis dan tropisdengan curah hujan antara 750 millimetre (30 in) dan 1.270 millimetre (50 in) per tahun. Sabana tropis tersebar diAfrika, India, wilayah utara Amerika Selatan, Malaysia, danAustralia.[73] Zona iklim subtropis lembap adalah daerah yang hujan musim dinginnya dikaitkan dengan badai besar yang diarahkan angin westerlies dari barat ke timur. Kebanyakan hujan musim panas terjadi selama badai petir dan siklon tropis.[74] Iklim subtropis lembap terletak di daratan sebelah timur, antara lintang 20° dan 40° derajat dari khatulistiwa.[75]
Iklim lautan (atau oseanik/maritim) dapat dijumpai di sepanjang pesisir barat di lintang tengah seluruh benua di dunia, berbatasan dengan lautan dingin dan wilayah tenggara Australia, dan memiliki presipitasi besar sepanjang tahun.[76] Iklim mediterania membentuk iklim benua di Cekungan Mediterania, sebagian wilayah barat Amerika Utara, sebagian Australia Barat dan Selatan, wilayah barat dayaAfrika Selatan dan sebagian wilayah tengah Chili. Iklim ini ditandai oleh musim panas yang panas dan kering dan musim dingin yang dingin dan basah.[77] Stepa adalah daratan rumput kering.[78] Iklim subarktik bersifat dingin dengan permafrost abadi dan presipitasi kecil.[79]

[sunting]Pengukuran

[sunting]Alat ukur

Pengukur hujan standar
Cara standar untuk mengukur curah hujan atau curah salju adalah menggunakan pengukur hujan standar, dengan variasi plastik 100-mm (4-in) dan logam 200-mm (8-in).[80] Tabung dalam diisi dengan 25 mm (0.98 in) hujan, limpahannya mengalir ke tabung luar. Pengukur plastik memiliki tanda di tabung dalam hingga resolusi 025 mm (0.98 in), sementara pengukur logam membutuhkan batang yang dirancang dengan tanda 025 mm (0.98 in). Setelah tabung dalam penuh, isinya dibuang dan diisi dengan air hujan yang tersisa di tabung luar sampai tabung luar kosong, sehingga menjumlahkan total keseluruhan sampai tabung luar kosong.[81] Jenis pengukuran lain adalah pengukur hujan sepatu yang populer (pengukur termurah dan paling rentan), ember miring, dan beban.[82] Untuk mengukur curah hujan dengan cara yang murah, kaleng silindris dengan sisi tegak dapat dipakai sebagai pengukur hujan jika dibiarkan berada di tempat terbuka, namun akurasinya bergantung pada penggaris yang digunakan untuk mengukur hujan. Semua pengukur hujan tadi dapat dibuat sendiri dengan pengetahuan yang memadai.[83]
Ketika penghitungan curah hujan dilakukan, berbagai jaringan muncul di seluruh Amerika Serikat dan tempat lain ketika penghitungan curah hujan dapat dikirimkan melalui Internet, seperti CoCoRAHS atau GLOBE.[84][85] Jika jariingan Internet tidak tersedia di daerah tempat tinggal, stasiun cuaca terdekat atau kantor meteorologi akan melakukan penghitungan.[86]
Satu milimeter curah hujan sama dengan satu liter air per meter persegi. Ini menyederhanakan penghitungan kebutuhan air untuk pertanian.[87]

[sunting]Sensor jarak jauh

Akumulasi curah hujan 24 jam di radar Val d'Irène, Kanada Timur. Zona tanpa data di timur dan barat daya disebabkan adanya sorotan sinar dari pegunungan. (Sumber: Environment Canada)
Salah satu kegunaan utama radar cuaca adalah mampu menilai jumlah curah hujan yang jatuh di cekungan besar untuk keperluan hidrologis.[88] Misalnya, pengendalian banjir sungai, pengelolaan selokan bawah tanah, dan pembangunan bendungan adalah semua bidang yang memerlukan data akumulasi curah hujan. Perhitungan curah hujan radar melengkapi data stasiun darat yang dapat digunakan untuk kalibrasi. Untuk menghasilkan akumulasi radar, tingkat hujan di satu titik dihitung menggunakan nilai data reflektivitas pada satu titik jaringan. Persamaan radar kemudian dipakai, yaitu
 Z = A R^b ,
Z berarti reflektivitas radar, R berarti tingkat curah hujan, dan A dan b adalah konstanta.[89] Perhitungan curah hujan satelit memakai instrumen gelombang mikropasif di atas orbit kutub serta satelit cuaca geostasioner untuk mengukur tingkat curah hujan secara tidak langsung.[90] Untuk menghasilkan akumulasi curah hujan pada satu periode waktu tertentu, semua akumulasi dari masing-masing kotak jaringan di dalam gambar pada waktu itu harus dijumlahkan.

[sunting]Intensitas

Intensitas curah hujan dikelompokkan menurut tingkat presipitasi:
  • Gerimis — ketika tingkat presipitasinya < 25 millimetre (0.98 in) per jam
  • Hujan sedang — ketika tingkat presipitasinya antara 25 millimetre (0.98 in) - 76 millimetre (3.0 in) atau 10 millimetre (0.39 in) per jam[91][92]
  • Hujan deras — ketika tingkat presipitasinya > 76 millimetre (3.0 in) per jam,[91]atau antara 10 millimetre (0.39 in) dan 50 millimetre (2.0 in) per jam[92]
  • Hujan badai — ketika tingkat presipitasinya > 50 millimetre (2.0 in) per jam[92]

[sunting]Periode kembali

Kemungkinan suatu peristiwa dengan intensitas dan durasi tertentu disebut frekuensi atau periode kembali.[93] Intensitas badai dapat diperkirakan untuk periode kembali dan durasi badai apapun dengan melihat grafik yang didasarkan pada data historis lokasi hujan.[94]Istilah badai 1 dalam 10 tahun menjelaskan peristiwa hujan yang jarang dan hanya mungkin terjadi sekali setiap 10 tahun, sehingga hujan ini memiliki kemungkinan 10 persen setiap tahun. Hujan akan lebih deras dan banjir akan lebih buruk daripada badai terburuk yang terjadi dalam satu tahun. Istilah badai 1 dalam 100 tahun menjelaskan peristiwa hujan yang sangat jarang dan akan terjadi dengan kemungkinan sekali dalam satu abad, sehingga hujan ini memiliki kemungkinan 1 persen setiap tahun. Hujan akan menjadi ekstrem dan banjir lebih parah daripada peristiwa 1 dalam 10 tahun tersebut. Seperti semua peristiwa kemungkinan, "badai 1 dalam 100 tahun" bisa saja terjadi berkali-kali dalam satu tahun saja.[95]

[sunting]Prakiraan hujan

Contoh prakiraan hujan lima hari dariHydrometeorological Prediction Center
Prakiraan Presipitasi Kuantitatif (disingkat PPK; QPF dalam bahasa Inggris) adalah perkiraan jumlah presipitasi cair yang terkumpul dalam periode tertentu di suatu daerah.[96] PPK akan diperinci ketika jenis presipitasi terukurkan yang mencapai batas minimal merupakan prakiraan untuk setiap am selama periode sah PPK. Prakiraan presipitasi cenderung dibatasi oleh jam sinoptis seperti 0000, 0600, 1200 dan 1800 GMT. Relief daratan juga termasuk dalam PPK melalui pemakaian topografi atau berdasarkan pola presipitasi iklim dari hasil observasi dengan rincian jelas.[97] Dimulai pada pertengahan hingga akhir 1990-an, PPK digunakan dalam model prakiraan hidrologi untuk mensimulasikan dampak terhadap sungai di seluruh Amerika Serikat.[98] Model prakiraan memperlihatkan sensitivitas tertentu terhadap tingkat kelembapan di lapisan pelindung planet, atau di tingkat terendah atmosfer yang menurun seiring ketinggiannya.[99] PPK dapat dibuat dengan dasar prakiraan jumlah kuantitatif atau kemungkinan prakiraan jumlah kualitatif.[100] Teknik prakiraan citra radar memperlihatkan kemampuan yang lebih tinggi daripada prakiraan model dalam 6 hingga 7 jam waktu citra radar. Prakiraan dapat diverifikasi melalui pemakaian pengukur hujan, prakiraan radar cuaca, atau keduanya. Berbagai skor kemampuan dapat ditentukan untuk mengukur nilai prakiraan curah hujan.[101]

[sunting]Dampak

[sunting]Pertanian

Prakiraan hujan untuk Jepang Selatan dan sekitarnya pada 20–27 Juli 2009.
Presipitasi, khususnya hujan, memiliki dampak dramatis terhadap pertanian. Semuatumbuhan memerlukan air untuk hidup, sehingga hujan (cara mengairi paling efektif) sangat penting bagi pertanian. Pola hujan biasa bersifat vital untuk kesehatantumbuhan, terlalu banyak atau terlalu sedikit hujan dapat membahayakan, bahkan merusak panen. Kekeringan dapat mematikan panen dan menambah erosi,[102]sementara terlalu basah dapat mendorong pertumbuhan jamur berbahaya.[103]Tumbuhan memerlukan beragam jumlah air hujan untuk hidup. Misalnya, kaktustertentu memerlukan sedikit air,[104] sementara tanaman tropis memerlukan ratusan inci hujan per tahun untuk hidup.
Di daerah musim hujan dan kemarau, nutrien tanah tersapu dan erosi meningkat selama musim hujan.[24] Hewan memiliki strategi adaptasi dan bertahan hidup di wilayah basah. Musim kemarau sebelumnya mengakibatkan kelangkaan makanan menjelang musim hujan, karena tanaman panen harus tumbuh terlebih dahulu.[105]Negara-negara berkembang mencatat bahwa penduduknya memiliki fluktuasi berat badan musiman karena kelangkaan makanan sebelum panen pertama yang terjadi pada akhir musim hujan.[106] Hujan dapatditampung menggunakan tangki air hujan; diolah agar dapat dikonsumsi, non-konsumsi dalam ruang atau irigasi.[107] Hujan berlebihan dalam waktu singkat dapat menyebabkan banjir bandang.[108]

[sunting]Budaya

Tanggapan budaya terhadap hujan berbeda-beda di seluruh dunia. Di daerah beriklim sedang, masyarakat, terutama pria, cenderung kesal ketika cuaca tidak stabil atau berawan.[109] Hujan juga dapat membawa kebahagiaan dan dianggap menenangkan serta memiliki estetika yang dinikmati masyarakat. Di daerah kering seperti India,[110] atau ketika terjadi kekeringan di daerah lain,[111] hujan memperbaiki suasana hati masyarakat. Di Botswana, kata 'hujan' dalam bahasa Setswana, "pula", digunakan sebagai nama mata uang nasional karena pentingnya hujan terhadap ekonomi negara gurun ini.[112] Beberapa budaya mengembangkan cara menghadapi hujan dengan berbagai alat lindung seperti payung dan jas hujan, serta alat pengalihan seperti talang air dan drainase badai yang mengalirkan air hujan ke selokan.[113] Banyak orang mencium adanya bau yang menenangkan selama dan sesaat setelah hujan. Sumber bau ini adalah petrikor, minyak yang dihasilkan tumbuh-tumbuhan, kemudian diserap bebatuan dan tanah dan dilepaskan ke udara selama hujan berlangsung.[114]

[sunting]Klimatologi global

Air sebanyak 505.000 kubik kilometer (121,000 cu mi) jatuh sebagai hujan setiap tahunnya di seluruh dunia, 398.000 kubik kilometer (95,000 cu mi) jatuh ke lautan.[115] Jika dibandingkan dengan luas permukaan Bumi, curah hujan rata-rata tahunan secara global mencapai 990 millimetre (39 in). Padang pasir ditetapkan sebagai wilayah dengan curah hujan rata-rata tahunan kurang dari 250 millimetre (10 in) per tahun,[116][117] atau sebagai wilayah ketika air lebih banyak yang menguap akibat evapotranspirasi daripada yang jatuh sebagai presipitasi.[118]

[sunting]Gurun

Gurun-gurun terbesar
Setengah benua Afrika di bagian utara didominasi gurun pasir atau wilayahgersang, termasuk Gurun Sahara. Di Asia, wilayah yang curah hujan minimum tahunannya besar, sebagian besar terdiri dari gurun pasir mulai dari Gurun Gobi di barat-baratdaya Mongolia melintasi barat Pakistan (Balochistan) dan Iran hingga Gurun Arab di Saudi Arabia. Sebagian besar Australia semi-gersang atau terdiri dari gurun pasir, sehingga menjadikannya benuaberpenghuni terkering di dunia. Di Amerika Selatan, untaian pegununganAndes menahan kelembapan Samudra Pasifik yang tiba di benua ini, sehingga memunculkan iklim mirip gurun di wilayah barat Argentina.[Wilayah kering di Amerika Serikat adalah wilayah tempat gurun Sonora menyapu Desert Southwest, Great Basin, dan Wyoming bagian tengah.

Wilayah basah

Wilayah khatulistiwa dekat Zona Konvergensi Intertropis (ITCZ), atau truf monsun, adalah wilayah terbasah di dunia. Setiap tahun, sabuk hujan di wilayah tropis bergerak ke utara pada bulan Agustus, kemudian bergerak kembali ke selatan menuju Belahan Bumi Selatan pada bulan Februari dan Maret.[121] Di Asia, hujan tersebar di seluruh wilayah selatan benua ini dari kawasan timur dan timur laut India hingga Filipina dan Cina selatan sampai Jepang karena monsun mengadveksikan kelembapan dari Samudera Hindia ke wilayah ini.[122] Truf monsun dapat memanjang ke utara hingga garis paralel ke-40 di Asia Timur pada bulan Agustus sebelum bergerak ke selatan. Pergerakannya ke kutub ini didorong oleh monsun musim panas yang ditandai dengan munculnya tekanan udara rendah (tekanan rendah panas) di kawasan terpanas Asia.[123][124] Sirkulasi monsun sejenis, namun lebih lemah, terjadi di Amerika Utara danAustralia.[125][126] Pada musim panas, monsun Barat Laut bersama kelembapan Teluk California dan Teluk Meksiko bergerak mengitaripegunungan subtropis di Samudera Atlantik, mengangkut badai petir sore dan malam di wilayah selatan Amerika Serikat dan Dataran Besar.[ Daratan Amerika Serikat di sebelah timur meridian ke-98, pegunungan Barat Laut Pasifik, dan Sierra Nevada adalah wilayah terbasah di negara ini, dengan curah hujan rata-rata melebihi 30 inci (760 mm) per tahun. Siklon tropis mendorong terjadinya hujan di seluruh wilayah selatan Amerika Serikat, serta Puerto Riko, Kepulauan Virgin Amerika Serikat, Kepulauan Mariana Utara, Guam, dan Samoa Amerika.

Dampak Westerlies

Hujan rata-rata jangka panjang menurut bulan
Westerly bergerak dari garis depan sejuk Atlantik Utara ke daerah lembap di Eropa Barat, terutama Britania Raya, yang pesisir baratnya menerima curah hujan antara 1.000 mm (39 in) di permukaan laut dan 2.500 mm (98 in) di pegunungan setiap tahunnya. Bergen, Norwegia adalah salah satu kota hujan terkenal di Eropa dengan curah hujan rata-rata tahunan mencapai 2.250 mm (89 in). Selama musim gugur, dingin, dan semi, sistem badai Pasifik mengangkut sebagian besar hujan untuk Hawaii dan Amerika Serikat bagian barat.[127] Di puncak pegunungan, arus jet membawa hujan maksimum musim panas keDanau-Danau Besar. Kawasan badai petir besar bernama kompleks konvektif skala meso bergerak ke Dataran Besar, Barat Tengah, dan Danau-Danau Besar selama musim panas, sehingga menyumbang 10% hujan tahunan di wilayah ini.[131]
Osilasi Selatan-El Niño mempengaruhi persebaran hujan dengan mengacaukan pola hujan di seluruh Amerika Serikat bagian Barat,[132]Barat Tengah,[133][134] Tenggara,[135] dan wilayah tropis. Ada pula bukti bahwa pemanasan global mendorong peningkatan hujan di Amerika Utara bagian timur, sementara kekeringan semakin sering terjadi di wilayah tropis dan subtropis.

Daerah terlembap

Cherrapunji, terletak di lereng selatan Himlaya Timur di Shillong, India adalah salah satu kawasan terlembap atau terbasah di Bumi, dengan curah hujan rata-rata tahunan mencapai 11.430 mm (450 in). Curah hujan tertinggi yang tercatat dalam satu tahun adalah 22.987 mm (905.0 in) pada 1861. Rata-rata 38 tahun di Mawsynram, Meghalaya, India adalah 11.873 mm (467.4 in).[ Daerah terlembap di Australia adalah Mount Bellenden Ker di timur laut negara ini yang memiliki curah hujan rata-rata 8.000 millimetre (310 in) per tahun. Pada 2000, curah hujan di daerah ini mencetak rekor tertinggi yaitu 12.200 mm (480.3 in). Mount Waialeale di pulauKaua'i di Kepulauan Hawaii memiliki curah hujan rata-rata lebih dari 11.680 millimetre (460 in) dalam 32 tahun terakhir, dengan rekor 17.340 millimetre (683 in) tahun 1982. Puncaknya dianggap sebagai salah satu daerah terbasah di Bumi. Daerah ini telah dipromosikan dalam literatur wisata selama beberapa tahun sebagai tempat terbasah di Bumi. Lloró, sebuah kota di Chocó, Kolombia, dianggap seabgai daerah dengan curah hujan terukur terbesar di dunia, rata-rata mencapai 13.300 mm (520 in) per tahun. Departemen Chocósangat lembap. Tutunendo, sebuah kota di departemen ini merupakan salah satu tempat yang diperkirakan terlembap di Bumi, rata-rata tahunannya mencapai 11.394 mm (448.6 in); pada tahun 1974, kota ini memiliki curah hujan 26.303 mm (3.6 in), curah hujan tahunan terbesar yang pernah diukur di Kolombia. Tidak seperti Cherrapunji yang hujan antara April dan September, Tutunendo mengalami hujan tersebar merata sepanjang tahun. Quibdó, ibu kota Chocó, mengalami hujan paling banyak di Bumi di antara kota-kota lebih dari 100.000 jiwa, yaitu 9.000 millimetre (350 in) per tahun. Badai di Chocó dapat menghasilkan curah hujan 500 mm (20 in) dalam satu hari. Jumlah ini lebih banyak daripada curah hujan di berbagai kota di dunia dalam satu tahun.
Benua Rata-rata tertinggi (inci/mm) Daerah Ketinggian (kaki/m)  Tahun Pencatatan 
 Amerika Selatan  5.236 in/132,994 mm  Lloró, Kolombia[a][b]  520 kaki/158 m[c]  29 
 Asia  4.674 in/118,720 mm  Mawsynram, India[a][d]  4.597 kaki/1,401 m  39 
 Oseania  4.600 in/116,840 mm  Mount Waiʻaleʻale, Kauai, Hawaii (AS)[a]  5.148 kaki/1,569 m  30 
 Afrika  4.050 in/102,870 mm  Debundscha, Kamerun  30 kaki/9.1 m  32 
 Amerika Selatan  3.540 in/89,916 mm  Quibdo, Kolombia  120 kaki/36.6 m  16 
 Australia  3.400 in/86,360 mm  Mount Bellenden Ker, Queensland  5.102 kaki/1,555 m  9 
 Amerika Utara  2.560 in/65,024 mm  Henderson Lake, British Columbia  12 kaki/3.66 m  14 
 Eropa  1.830 in/46,482 mm  Crkvice, Montenegro  3.337 kaki/1,017 m  22 
Sumber (tanpa konversi): Global Measured Extremes of Temperature and Precipitation, National Climatic Data Center. August 9, 2004.[141]

BenuaDaerahCurah hujan tertinggi Referensi 
Curah hujan rata-rata tahunan tertinggi Asia Mawsynram, India 4.674 in/118,720 mm [142]
Tertinggi dalam satu tahun Asia Cherrapunji, India 1,042 in/26 mm [143]
Tertinggi dalam satu bulan Asia Cherrapunji, India 366 in/9,296 mm[143]
Tertinggi dalam 24 jam Samudra Hindia Fac Fac, Pulau La Reunion 73 in/1,854 mm[144]
Tertinggi dalam 12 jam Samudra Hindia Belouve, Pulau La Reunion 53 in/1,346 mm[143]
Tertinggi dalam satu menit Amerika Utara Guadeloupe, Kepulauan Karibia 15 in/381 mm[144]
SUMBER : WIKIPEDIA